
PLANE CONTACT PROBLEM OF THE TREORY OF EL.~STIClTY 
WITH EO~RI~~ OR FRICTIONAL FORTES 

(PLOSKAIA KONTAKTNAIA ZADACHA TEORII UPRUGOSTI S 
UCHETOM SIL STSEPLENIIA IL1 TRENIIA) 

PMM Vol. 30, No. 3, 1966, pp. 551-563 

G.Ia. POPOV 
(Odessa) 

(Received November 9, 196.5) 

Unlike the results obtained in [l to 31, the methods given below are based on a certain 

property of Jacobi polynomials of a particular typa. 

Proof of this property is given in par. 1. In par. 2 w.e consider a contact problem for 
a semi - infinite plane with frictional or bonding forces within the zone of contact and 
with thermal strensea present. In par. 3 formulas are given for computing the field of 
stress in tbe semi-infinite plane under the action of a punch with bonding. In par. 4 we 
apply the plane contact problem with bonding or frictional forces taken into account, to 

an elastic foundation of a general type. All the listed contact problems are solved for the 
case of a single region of contact, and plane deformation is assumed everywhere. 

1. In this psragraph we shall prove the following important relationship 

(1.11 

where 

(1.2) 

2p. = nsecny-2 w*c ny [In 2 + II, (0.5 + r) - 9 (I)], pm = (nc sin nQ_l 

(na = I, 2 . . .) 
p,y (%) = p,““* -Y-‘/z @), cpy(z) = (I- 2)-y+yz (1 + z)y+y'* 

Here P$ (x) is a Jacobi polynomial and $ (rf is Euler’s ash-function [4]. The 

relationship (1.1) is proved in [S] for the case m = 0, hence only the case m >/ 1 remains 

to be considered. We shall begin by evaluating the integral 

L(z) = ( ln(z - t)(* _y$: t)_P W(~~~)>--~~ ~~(--1,i)l (1,3) 
-1 
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Using the formula [4] 

and integrating by parts, we have 

1 W--g-&\ fl - ty+m (1 + “)“-_ dt 

--I 
(s - If” 

expanding the denominator in the iotegrand into a series in increasing powers of 

(1 - t) and subsequsntly integrating term by term, we obtain 

Let now E tend to the points on the segment (1 -1, 1) of the real axis, assuming at 

the same time that 

In (2 -s)-+lnjr---1, z+xfiO, z>s 

ln(z-s)-+In/x--,s/*fin z-+rfiO, S<S fl.6) 

and remembering that the hypergeometric function appearing in (1.5) is multivalued. 

To obtain the singk+v&ed branch, we must introduce a cut along the (-1, I) seg- 

ment of the real axis. Valuee of this function on the edges of this cut are easily found if 

use is made of the formula ([6], p. 111) 

+~~a+R+~m+2~~6--~----a) 2 

r(4f(f+P+m)b-~i)m 
&Fix _ 

> 

-1-a 

1-Z 
81 

-P- m, 1 f a + m; I - 5 

2$-a; 2 

Formula (1.3) can be written as 

L (2) = ( S $ c’, In (2 - t) (1 - t)” (1 -f- @ P$ (t) dt (1.8) 
-1 ;: 

from which, together with (1.61, we easily obtain 

+++iO)+L(x-iO)] = i ra~s-~J((1-t)“(1+t)~~~~(t)clt 

--I 

On the other hand, (1.5) and (1.7) yield 

3 [L (f + 2.0) + L (r - iO)J = 
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= r (- 1 - a) r (1 + a -t_ m) cos nz m, 1 -I- a -i m; 1 --z -_ 
z-@ m! (1 - z)-’ -= 

8, ‘-- 
( 2 -/- a; 2 ) 

I% - 1 - a - p - 1% 
- 21+a+‘B r (1 + a) r (f + p -t ?jL) ,.F, 

mr(o+P+m $2) ( - a; 

9 

i 

hence 
1 

s 
In 15 - t I(1 - t)” (1 + t)’ P2’ (t) dt = 

21+a+flF;i + a) r (1 + p + m) =- 
mr(a+P+n+2) 

,F, in’ -I -_q*;P-m’ IF) + (1.9) 

+r(_i+a+m)cotnaaF, p-m, l+a+m; 1-_2 n 

2 B ml (1 - x)-l-= ( 2+ a: 2 ) r (2 + a) 

Taking into account (1.4) we can easily confirm that 

l 1 S -2-sign (22 - t) (1 - t)” (1 + t)” PZ@ (t) dt = 
-1 

= - (2m)--‘(1 - z)l+‘a (1 + z)l+8 Pg: @+I (5) 

If we however assume that [4] 

(1.10) 

n! Pi? (5) = (1 + a), *F1(1 + a + p + n, - n; 1 + a; ‘/a (1 - 2)) 

81 (a, B; T; 2) = (1 - 4 y-a--B ,FI(7 - a, T - P; 7; 2) 

then 

1 

1 * + sign (I - t) 
P; @ (t) dt 

-1 (1 - q-” (1 + q-8 = 

Finally, adding to the above (1.9) multiplied by n-l tan na,we shall find that 

1 

+-sign(s-_t)- 
-1 

tannar(1+a)r(1+f3+m) 2F1 m, -l-a-~-m; 

= - 2-1-a-B nmr (a + p + m + 2) 

1-_2 

-a 2 

from which, assuming that ti = T - l/e, p = - T - ‘/a and taking (1.10) into account, 

we obtain (1.1). 

2. If surface stresses (here p (x) are the normal, while q (4 are the tangential stresses) 

and the temperature t (5, 0) = g, (z), both the stresses and the temperature tending to 
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zero at infinity, are given on the boundary of the semi-infinite plane ( - 00 < x <co, 

0 < y < oo) in a stationary temperature field, the methods of operational calculus [7] can 

be used to obtain the following formulas for the vertical (parallel to y-axis) u1 (4 and 

horizontal u1 (x) displacements of the points on the boundary (y = 0) of the semi-infinite 

plane : 

.~ 
u= 1. a 

P1= P--ag1, pz = q; 810: = (1 + Y) u, Jw = 2 (I- q (2.1) 

Ef& = (1 + V) (I - 2~) 

Here ajk is the Kronecher symbol ; E, v and u are the modulus of elasticity, Poisson 

coefficient, and the coefficient of linear expansion respectively, while C, and C, are un- 

defined constants. With the formulas (2.1) available, it is easy to formulate a numher of 

contact problems with the thermal stresses taken into account. 

Let us for example consider a punch with a plane rectilinear face (length 2a) in 

contact with an elastic semi-plane and acted upon by an arbitrary system of forces. We 

shall assume here that the temperature of the face of the punch is given by the function 

g, (4, -- a\<z< u while that of the part of the boundary of the semi-plane not in 

contact with the punch is given by t (5, 0) = g, (z), ) 5 I> a. 

We shall also assume the contact between the punch and the semi-plane is complete 

[7] and that t (5, 0) = gl (z), 1x1 \<a. 

Then, by (2.1). contact stresses p (4 and g (x) should satisfy the following system 

of integral equations 

i [ Kjk(x-_s)pk(S)ds = O[8j,SKj,(z-_,g,(s)ds f 

k=l_” 1 

f- i 22v ( Kjl (X - S) gl (S) dS + 6jl&-'OX + Cj (1 = 1,2, --a<x<a) 
--a 

Here @ is the angle of inclination of the stamp, 1 is the real axis with the interval 

(- a, a) excluded, Ci are arbitrary constants, differing however from those in (2.1). 

Let us now make the substitution 2 = a%, s = az,multiply the first of the obtained 

equations (j = 1) by i and substract from it the second one (I= 2) to obtain a single 

integral equation 

1 
3 s[ +sien(%---t) + c~ln&]~(~)dz-_f(%) (-l<E<f) (2.2) 

-1 

for the function 

X (E) = ap (a%) - uafil (a%) + ia (a%) (2.3) 
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Here we have assumed, that 

ix = cot ny; y -1 --i& 3q1 = 1 tt { [(x + 1) /(ii - 1> 1 = S - /Iv} coth.“rft =x (2.4) 

The right-hand side of (2.2) is of the type 

-+ iC, -- L’, -f- iw% (- pqz< ( 
3 

(1) == #lso,- ‘) 

where I’ denotes the real axis without the interval (-1, 1). 

If on the other hand the contact between the punch and the semi-plane gives rise to 
frictional instead of bonding forces and a critical-state [I, 2 and 31 q-(x) = kp (r) is 

reached, then, using the first (i = I] formula of (2.1) as a starting point, we can reduce this 

problem to (2.2). This time however, unlike the previous case, we shall have 

(2.6) 

At present two methods of exact solution of (2.2) are known. IO the first one, both 

parts of the equation are transformed by formal differentiation into an ordinary singular 

integral equation which is solvable in the real form. This method was employed by 

Shtaerman [2] +. 

The other method is due to Krein. In it, the limits of integration must first be changed 

to (-a, a), then a formula applied (formulas (3.4) and (3.5) in [S]) leading to the solution 

in which the right-hand side of the equation becomes identically equal to zero, and finally, 

use made of the Krein’s result. 

Both methods give the solution in form of quadratures. These however become complex 

for more compilcated right-hand sides, since in the first method the solution is given in 

form of an integral the principal value of which most be used, while the second method 

uses double integrals of appreciable compIexity. 

+ Obviously, the appropriate problems are reduced to the integral equation (2.2) without 

the thermai stresses. In the course of solving a plane contact problem of the theory of 

elasticity with the frictional forces, Shtaerman [2] obtained an equation, differing slightly 

in structure from (2.2). Use of an additive constant makes it possible to transform this 

equation into (2.2), but then the coefficient of the logarithm will be different. The 

reason for this is that Shtaermau neglected, in his derivation (this was pointed out by 

Ia. L, Nudel’man in I955), the second term in the expression rxjl == 6’ (an* i dz f aa / a.~). 

To make Shtaerman’s results correct (and in line with the formulas of Maskhelishvili 

[I] ), it is necessary to compute the coefficient v appearing in his formulas, according to 

v = (~,(tf+ el@Q-l (o,(~)+- e,(2)), e,(-i)= 2 11 - ~~2) (sp, c3,o) = 

= Ej-l (t -+- Yj) (i - 2Yj) (j===i, 2) 

where k is the coefficient of friction, vi and Ei are the Poisson coefficient and the 

[continued on tfre nezt puge) 



658 G.fa. Popov 

The relation obtained in the previous paragraph leads to yet another method of 

solution of (2.21, and we shall utilise it in the present work. 

In order to obtain the solution of (2.2) by this method we must, in general, expand 

the right hand-side into a series 

,:I‘ 

/(E) 2 11 ,il~)?lL-‘i’ (6) (2.7) 
I,, 1, 

Then, by (l.l), the solution wil1 be of the type 

In many problems, the rightiand aide either is a polynomial, or can be well approximated 

by a polynomial. In such cases, we must obtain a solution Xn (0 of (2.2) the right-hand 

side of which, is 

where 

I(E) g” = 2 (‘,,:“i-y) f’,,,;“(E) (2.8) 
1117 0 

h, = s l fp,,y MY dE __ Jz s=ws ‘?z;=O 
_l c(4) i (m!z2)-‘r(m+r+Ila)r(nL-~+‘/z), m=f,2,... 

(2.10) 

bjm (7) = ( ‘my @~~(5, 5)3 d’ = 
. 1 0, i< n& 

2j~!1’(~~-~++/a)~(i+Y+‘h), j>,m 

--_I (- l)mm! (j-m)! (j + my (2.11) 

Here we have utilised the formulas 7.391 from [4]. According to (Ll), we have 

m=D 

(2.12) 

To illustrate the application of the obtained formulas, we shall use the following 

problem. Let a punch with a plane face (width 2a) be pressed into an elastic semi- 

infinite plane acted upon by an arbitrary system of forces (P and Q being vertical and 

horizontal components of the principal vector respectively, and M the principal moment). 

We assume that coupling exists between the punch and the face and, that the bonndary of 

the semi-plane not under the punch, is maintained at zero temperature. The functions da- 

fining the temperature of the face of the punch shall be approximated by means of a 

polynomial, i.e. 

(costjsue~ from previous pugef 
modulns of elasticity, respectively, for the first (j = Xl and the second (j = 2) body. 
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I, --I 

;r[l (ST) = jz /ij*Xj (ga (.r) 55 II) (2.13) 

In this case, according to (2.5), the right-hand side of (2.2) will assume the form 

(2.14) 

Using (2.12) we shall easily find the solution of (2.2) corresponding to the right-hand 

side of (2.13) 

(2.15) 

j- * ,- 

where C is au arbitrary constant to be determined later. 

Conditions of equilibrium of the punch with (2.3) taken into account, can be written 

as 

n I 
nr - - Q 2 Aj_; l + (y aj = Re 
a s 

x 6) WE 
j=l -0 

(2.16) 

Let us now put the expression (2.15) under the integral sign of the first formula of 

(2.16). Orthogonality of Jacobi polynomials and use of (2.10) and (2.4) lead, on integration, 

to 

WI-l) 2i- IA’, T 

(P+iQ-220 2 a21_-1)2) (2.17) 
j=1 

Here and in the following, (n) will denote either a whole number %n or the nearest 

smaller whole number. In order to utilise the second condition of equilibrium, we shall 

have to separate the real part of X ( 5 1. I n connection with this we shall note that the 

values given by (2.10) are real even when y = - ip (Im g = 0). 

From the integral representation (2.9) for C,” (y) we can, by replacing the variable 

of integration t with - 6 and utilising a known ([4], p. 1049) relationship 

establish, that 

(2.18) 

Here the bar denotes a complex conjugate. The formula in brackets follows from the 

second equality of (2.9). 

From the second formula of (2.15) we have 
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(k=l,Z, . . .) 
(2.19) 

A 

where 

C,f”1 = - ic,” 

Let us now put (2.15) under the integral sign of the second formula of (2.16) and let 

us integrate it, using (2.9). Separating the real part by means of (2.19). we shall obtain 

the formula I 

(2.20) 

for the sngle @ of rotation of the punch. 

Formulas (2.3), (2.15), (2.17) and (2.20) give a complete solution of the probIem. 

When separating the real from the imaginary part in (2.15), we must remember that, when 

y = - ip (Im p = 0). then by (1.4). we have 

+ i f [ (1 - E2)“+ sin f.t In ~1) 

(2.21) 

Let now the temperature of the face of the punch be constant, i.e. 

.&71(z) = to (Ao* =&~t Aj* ~0, f= 1, 2. . .) (2.22) 

In this case by (2.3), (2.15), (2.17) and (2.20), we have, for the normal contact stress, 

For the tangential contact stress the formula wiIl be analogous (without however the 

first term). It shall not be quoted here. (2.20) in which the term containing the s~mation 

is neglected, gives the corresponding value for the angle of rotation of the punch. If 

& = M = Q = 0, then the last expression becomes a formula given by Mnskhelishvili ([l]. 

p. 433), provided it is previously divided by 2 (a misprint). 

Let us now consider the case (2.13) in which frictional forces replace the bonding forces* 

In this case the right-hand side of (2.2) becomes, by (2.6), 

f(E) _ (.‘r + w*g - G i 
j=l 

“-; C&l 

Use of (2.12) enables us to obtain the solution of (2.2) in the form 
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Here A n is defined by the second formula of (2.15), and y by the corresponding 
formula of $6). 

Conditions of equilibrium of the punch lead us again, as in the case of bonding 

forces, to 

Formulas (2.6), (2.23) and (2.24) allow us to solve the considered contact problem in 

the presence of frictional forces, with the condition (2.13) in force. When the temperature 
of the punch is constant i.e. (2.22), the formulas for the normal contact stress and the 
angle of rotation of the punch, become 

cesny(e”-x) 2 r-‘I* 
P (4 = 

n (0.25 - ~~)(a* + z?)~+“* [(P - 2aato) (0.25+71+ e) + 

+$(y+ G)- an3tu see ny (1 - sin ny) (0.25 - T2) (27 $- o-l%) 
I 

+ Go 

08 

@*=kB, = 
cot ZY 

2n (0.25 - y2) i 
E + 2yP - &q&l a 1 + a&J 

Putting to = 0, results in Mnshhelishvili formulas ([1] , p. 452). 

3. The solutions of contact problems obtained in the last paragraph in the form of 
Jacobi polynomials, are suitable for computing the stress and strain fields inside the 
semi-plane. We shall illustrate the point with pare (without thermal stresses) elastic 
problems. 

In the general case of the problem with bonding forces, contact stresses p (z) and 

g (z) will, in view of the previous argumenst, be gfven by 

x (5) = UP (4+ iaq (4.1 = 2 z xm* (4, %n* w = pmy (E) 
Q: (f) (3.1) 

m 

According to [I], the stress field in the semi-plane can be found by ntilising the 

relation 
-- 

ox+ (J‘u = 2 [(?, (2) + m(z)], ol, - iZxll = CD (2) - Q (Z) + (2 - z)Q (z) (3.2) 

where in our case 

(I, (2) = 

Using (3.1), we can write 

ur(bt=Z* ‘y,(E), 
Eu m 

1 

Y(C) Z &- \ x 
-‘1 E---5 

f P,‘(4) 
yy, (f) = -&- j ‘p, (5) 

-1 

dE 
E---E 

(3.3) 

(3.4) 
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But the fast integral represents, with the accuracy of up to the value of the multiplier, 

a Jacobi function of the second kind, which can be expressed in terms of Gauss’ hyper- 

geometric function (191, p. 86), as 

Further, by the formula 9.132 (I) of 141, we have 

which can be further simplified with the hefp of 

“; 
J1 (“S p,“.“‘:‘) L 2; tn)j tb “-_!Jd_; &; __ 11, ! _ q (il!pk (1 - ck 

(3.7) 
J. 1 

jc.0 if (b), 
(I - .r)Q pp! (JJf .-k)! (b)k 

To confirm that the second equality is true, we must replace the term in the infinite 

sum, with that given in [6] p. 7. 

aBd change the order of snmmation. 

Use of (3.7) to transform the right hand side of (3.6) results in 

1‘ (y - l,‘r) 
- --/-- 

m+l()JL+ J)*r(~--r$‘/z)(5 --lF 
(3.8) 

~- 
-i?lt &tiO L! (l/i -- 1 - /;f!(-- 7 + QJt, ‘tk 

in place of (3.5f. The second sum in the above expression sboufd be omitted when m = 0. 

So we arrive at the set (3.2) to (3.4) which, together with (3.81, define in terms of 
elementary functions, the stress fieldin the semi-plane in case of the contact problem 
with the bonding forces present. The parameter y is defined here by (2.4). 

For the contact problem with frictional forces we have, in general, 

The field of stress will be given here by (3.2) and (3.31, and 

where the fo~~~a (3.8) is valid for ‘?m (ol while the second formula of (2.6) is valid for 

Y- 
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From (3.8) we obtain, when y = 0, tbe solution of the contact problem with tangential 

contact stresses absent. 

4. Consider an elastic foundation of e general type. Following [S] we shall assume 

that the influence functions are given by 

(4.1) 

sinks&, $o,z(0)=O; $h(t)= 1+0(l), t-+w(m=O,f,2) 

0 

where vo* (xl defines the vertical displacement of the points of the surface of the founda- 
tion- under the action of the unit vertical force applied at the point (Z = 0, y = 0) of the 

surface of the foundation,u,* (z) are the horizontal displacements due to a horizontal 
force, vk* (xl are the vertical displacements caused by horizontal forces or vice-versa; 

8,) 0, and h are some positive parameters, and 0, > 0,. [S] gives the expressions for 

$m (t) (m =O, It 2) for the foundation in the form of a layer with one fixed boundary (in 
this case h is the thickness of the layer, while 8, and 0, are given by the formulas from 

(2.1)). 

If we denote the length of the area of contact by 20, normal contact stress by p (x), 

tangential stress by q (n) and vertical and horizontal displacements of the points of the 

surface within the area of contact by ft fz) and fi ( x respectively, then the considered 1 

contact problem (without thermal stresses) can easily be reduced to a system of integral 
equations 

To arrive at the approximate solution of the above system we shall, utilising (1.1). 

represent the function8 um as [5 and 101 

urn ($1 zzz - -k”p _ I, @>, Em @) = $ M If - %I? wy ts -e-f 

s 

& 

0 

fY 
(4.3) 

us (s) = (‘/a) sign s - II (s), I, (s) =. x 
I 

* - T (r) sin ts 0% (m = 0, a) 

0 

Since $m (a) are assumed to be asymptotic, the functions I, (5) will be continuous 

on the real axis. Moreover, in case of an elastic layer, they will be analytic inside the 

circle IsI < 2. 

From the above it follows that they can, within the interval (- 2 < s < 2) be approximated 
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by means of parts of the corresponding Taylor series 

(4.4) 

At the same time by (4.31, we have 

Whenever a is found outside the interval of convergence or lm (s) are found not to be 

analytic, the values of 1, (a) (m = 0, 1, 2) must be tabulated by means of (4.3). With such 

tabies available, the functions Im (sf can again be approximated by means of (4.4). but in 

this case the coefficients 07 must be determined from the condition of minimum deviations 

in one sense or another. 

Let us substitute urn (s) (m = 0, 1, 2) from (4.3) into (4.2). After the operations 

resembling those used to obtain (2.2) we shall, in place of (4.2). obtain (camp. [s]) 

x (E) = UP (4 + ial! (49 x+1 
u(E) z &-l [fl (UC) + if2 (aQ], ix = ‘Ot nr2 r z - ik’n x-_l (4.6) 

Coefficients C are given in terms of a$ according to 

2hzkCzk+ = ix (ak’ - ak’), h2k+1C2k~x = ak’; &k+l = 0 (k=O, 1, 2...) 

zc, = x (ao” + a$ + 2n-1 In h), 2&VCai- = iX (aj” + CZj’) (i= 1, 2. * .) 

We shall assume that the function u (5) is expanded into a series in terms of Jacobi 

pofynomiaIs 

a(E) = kgo %KY G) (4.7) 

and we shall seek a solution of (4.5) in the form 

(4.8) 

Here zm are the complex coefficients to be determined. The validity of the second 

form&a of (4.8) is arssured by the fact that, by (4.6), Rt y = 0 (or ‘II > 1). 

Let us now consider the integrals of the type 
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1 I 
(4 - t)k P,y (5) P;y (T)& 

-1-t 
‘p, (41 Piu W 

(4.9) 

Expanding ([- ~1~ into a series in terms of (1 - 0 andusing (2.11) we can confirm 

the second equality in the above formula. 

If we now substitute (4.7) and (4.8) into (4.5) and integrate both sides of the obtained 

equation with the weight function PT (E) /vu (E) over the interval f- 1, l), we shall 

arrive at the following system of algebraic equations 

(4.101 

N-l N 

Ck+Bf; + &,, 2 CLBf, )l (l=O,l, , N) 
k=m+Z k=m+l 

for the first N = 2n + 1 coefficients em = z,,, 

given by 

ZI = ia I Pl, 

In (4.9) the separation of the real from the 

I 

+ iv,, while the remaining ones will be 

l>N 
imaginary parts is easy, since 

which follows from (4.8) and (2.18). 

As a result of this separation we obtain, as in [5], two independently solvable systems 

of algebraic equations, one which covers ~aj, J/zj+l (i = 0, 1, . . . , n), while the 

other covers x sj+lS Y2/ (j=% 1, ---s n). They both differ from the case in [5], in that 

they possess a triangu ar matrix of coefficients. Apart from this, the solution of the problem 

is obtained in exactly the same manner, as in [5]. 

If Coulomb friction is considered instead of bonding forces, the approximate integral 

equation (4.5) becomes 

l 1 S[ ,sign(F,-~)fc~ln A-- $ Ck* (E --,Z)k] X (‘C) dz = + 
--I k=O 

(i.111 

(CO* =x* (atjo - SK-~ In h), hakCzk*=xfoko, k > 1; ~2k+1~ak:, = arl) 

(k=O, 1, 2.. .; x*-=k-lx) 

The parameter y is defined here by the second formula,of (2.61, while the normal con- 

tact stress in question is found from the formula X (k) = ap (aE). 

If we expand the function fi (xl describing the settlement of the foundation in the 

region of contact into a series in terms of Jacobi polynomials, and seek X ((1 in form 

of a series, i.e. 

then, similarly to the previous case, we shall obtain 
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If the punch has s plane face, then fi (x1 = 6 + gz. In this case pu = 6 $ ~u@T, 

;;r: 2a8, f!, = 0 (I := 2, 3, 4, * ” *), and the contact stress must be sought in the 

Also, by (4.12) the coefficients X: should be obtained from the following system of 

algebraic equations 

possessing a triangular coefficient matrix. Finally, using the conditions of equilibrium 

of the punch, we obtain the following relations 

rc e,xiJ” + 
na (6, 12yXo0 + (0.25 - yz)xlo+ 

which allow us to find M and P in terms 

of rotation 0, and vice-versa. 

e*x,y = P cos ny 

0, P&Y, + (o.25-7”)x,11} =L M cos ny 

of the displacement of the punch 6 and its angle 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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